Analysis of biotinylated generation 4 poly(amidoamine) (PAMAM) dendrimer distribution in the rat brain and toxicity in a cellular model of the blood-brain barrier.
نویسندگان
چکیده
Dendrimers are highly customizable nanopolymers with qualities that make them ideal for drug delivery. The high binding affinity of biotin/avidin provides a useful approach to fluorescently label synthesized dendrimer-conjugates in cells and tissues. In addition, biotin may facilitate delivery of dendrimers through the blood-brain barrier (BBB) via carrier-mediated endocytosis. The purpose of this research was to: (1) measure toxicity using lactate dehydrogenase (LDH) assays of generation (G)4 biotinylated and non-biotinylated poly(amidoamine) (PAMAM) dendrimers in a co-culture model of the BBB, (2) determine distribution of dendrimers in the rat brain, kidney, and liver following systemic administration of dendrimers, and (3) conduct atomic force microscopy (AFM) on rat brain sections following systemic administration of dendrimers. LDH measurements showed that biotinylated dendrimers were toxic to cell co-culture after 48 h of treatment. Distribution studies showed evidence of biotinylated and non-biotinylated PAMAM dendrimers in brain. AFM studies showed evidence of dendrimers only in brain tissue of treated rats. These results indicate that biotinylation does not decrease toxicity associated with PAMAM dendrimers and that biotinylated PAMAM dendrimers distribute in the brain. Furthermore, this article provides evidence of nanoparticles in brain tissue following systemic administration of nanoparticles supported by both fluorescence microscopy and AFM.
منابع مشابه
Evaluation of Biotinylated PAMAM Dendrimer Toxicity in Models of the Blood Brain Barrier: A Biophysical and Cellular Approach
The interaction of biotinylated G4 poly (amidoamine) (PAMAM) dendrimer conjugates and G4 PAMAM dendrimers with in vitro models of the blood brain barrier (BBB) was evaluated using Langmuir Blodgett monolayer techniques, atomic force microscopy (AFM) and lactate dehydrogenase measures of cell membrane toxicity. Results indicate that both G4 and G4 biotinylated PAMAM dendrimers disrupt the compos...
متن کاملAntibacterial activity of amino- and amido- terminated poly (amidoamine)-G6 dendrimer on isolated bacteria from clinical specimens and standard strains
Background: Nanoscale poly (amidoamine) dendrimers have been investigated for their biological demands, but their antibacterial activity has not been widely discovered. Thus, the sixth generation of poly (amidoamine) dendrimer (PAMAM-G6) was synthesized and its antibacterial activities were evaluated on Gram-negative bacteria; P. aeruginosa, E. coli, A. baumannii, S. typhimur...
متن کاملStudying the Corrosion Protection Behavior of an Epoxy Composite Coating Reinforced with Functionalized Graphene Oxide by Second and Fourth Generations of Poly(amidoamine) Dendrimers (GO-PAMAM-2, 4)
In this research, graphene oxide (GO) nanoparticles were modified by second and fourth generations of poly(amidoamine) dendrimers in order to improve the particle dispersion quality in the epoxy matrix and therefore its barrier anti-corrosion performance. Confirmation on the GO surface modification by Polyamidoamine generation 2 (PAMAM2) and polyamidoamin generation 4 (PAMAM4) was carried o...
متن کاملEVALUATION OF ANTI-CANCER ACTIVITY OF COVALENTLY CONJUGATED METHOTREXATE TO POLYAMIDOAMINE GENERATION 4 DENDRIMER ON MCF-7 CANCER CELLS: AN EXPERIMENTAL STUDY
Background & Aims: Poly (amidoamine) dendrimer (PAMAM) is highly macromolecular at nanosize with widely active amine groups on the surface that allows it to attach to the anti-cancer drugs such as Methotrexate (MTX). This study aimed to synthesize and characterize PAMAM-MTX (dendrimer-MTX) complex, then to evaluate the cytotoxic effect of the synthesized complex on MCF-7 cancer cells. Material...
متن کاملSRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 18 9 شماره
صفحات -
تاریخ انتشار 2013